首页> 外文OA文献 >Taxi Dispatch with Real-Time Sensing Data in Metropolitan Areas: A Receding Horizon Control Approach
【2h】

Taxi Dispatch with Real-Time Sensing Data in Metropolitan Areas: A Receding Horizon Control Approach

机译:大都市区实时传感数据的出租车调度:a   退出地平线控制方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Traditional taxi systems in metropolitan areas often suffer frominefficiencies due to uncoordinated actions as system capacity and customerdemand change. With the pervasive deployment of networked sensors in modernvehicles, large amounts of information regarding customer demand and systemstatus can be collected in real time. This information provides opportunitiesto perform various types of control and coordination for large-scaleintelligent transportation systems. In this paper, we present a recedinghorizon control (RHC) framework to dispatch taxis, which incorporates highlyspatiotemporally correlated demand/supply models and real-time GPS location andoccupancy information. The objectives include matching spatiotemporal ratiobetween demand and supply for service quality with minimum current andanticipated future taxi idle driving distance. Extensive trace-driven analysiswith a data set containing taxi operational records in San Francisco shows thatour solution reduces the average total idle distance by 52%, and reduces thesupply demand ratio error across the city during one experimental time slot by45%. Moreover, our RHC framework is compatible with a wide variety ofpredictive models and optimization problem formulations. This compatibilityproperty allows us to solve robust optimization problems with correspondingdemand uncertainty models that provide disruptive event information.
机译:大都市地区的传统出租车系统通常由于系统容量和客户需求变化而采取的不协调行动而效率低下。随着现代车辆中网络传感器的广泛部署,可以实时收集有关客户需求和系统状态的大量信息。该信息为大型智能运输系统提供了执行各种类型的控制和协调的机会。在本文中,我们提出了一种用于调度出租车的后向水平控制(RHC)框架,该框架结合了高度时空相关的需求/供应模型以及实时GPS位置和占用信息。目标包括以最小的电流和预期的未来出租车空转行驶距离来匹配服务质量的需求和供给之间的时空比率。广泛的跟踪驱动分析以及包含旧金山出租车运营记录的数据集表明,我们的解决方案将平均总空闲距离减少了52%,并在一个实验时段内将整个城市的供求比率误差减少了45%。此外,我们的RHC框架与各种预测模型和优化问题公式兼容。此兼容性属性使我们能够使用相应的需求不确定性模型(提供破坏性事件信息)来解决鲁棒的优化问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号